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A B S T R A C T

What are the economic consequences of mining in Sub-Saharan Africa? Using a panel of 3,635 districts from
42 Sub-Saharan African countries for the period 1992 to 2012 we investigate the effects of mining on living
standards (measured by night-lights and household/cohort characteristics from Demographic and Health Sur-
veys) and public service provisions (from Afrobarometer). Night-lights increase in mining districts when mineral
production expands (intensive margin), but large effects are mainly associated with new discoveries and new
production (extensive margin). We identify the effect by carefully choosing feasible but not yet mined districts as
a control group. In addition, we exploit first, single-first, giant and major discoveries as exogenous news shocks.
Mines in Africa exhibit enclave characteristics as we find little evidence of significant spillovers to other districts.

1. Introduction

The industrial age of eighteenth and nineteenth century witnessed
a coming together of coal, iron and steel, and steam power which
propelled living standards to a level unprecedented in human history.
Britain and other continental European countries were able to success-
fully utilize natural resources to industrialize and improve living stan-
dards. The post-independence development experience of resource rich
developing nations especially in sub-Saharan Africa however have been
dismal giving rise to the view that natural resources adversely affect
economic development.

Indeed, a large body of predominantly macro literature document
a negative correlation between growth rates of GDP per capita and
resource reliance by exploiting variation across countries.1 This liter-
ature broadly identifies three potential channels through which natu-
ral resources could hinder development. First, natural resource exports
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1 See van der Ploeg (2011) for a survey of this literature. More recently Alexeev and Conrad (2009) report positive effects of oil and mineral wealth on growth.
2 This argument may not be relevant in the Sub-Saharan African context as the manufacturing sector is small and the exchange rate is not viewed as a key

constraint for the same (Bigsten and Söderbom, 2006).

could appreciate the real exchange rate thereby disadvantaging the
tradable non-resource sector (or the modern sector) of an economy
(Corden and Neary, 1982). Adverse development outcomes could be
permanent, if competitiveness cannot be regained.2 Second, over-
reliance on natural resources for government revenue could give rise to
corruption and weak institutions as the state would no longer require
relying on the non-resource sector as a major source of revenue (Robin-
son et al., 2006). Third, the high volatility of global commodity prices
could disadvantage resource rich developing countries as they become
more exposed to global shocks and macroeconomic instability (Deaton,
1999; Ramey and Ramey, 1995). Acknowledging the adverse conse-
quences of natural resources, a large body of literature also engage with
the question of harnessing natural wealth for economic development.
See Venables (2016) for a survey.

Another literature that largely follows from the influential works
of Rosenstein-Rodan (1943), Singer (1950) and Murphy et al. (1989)
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argue that mining in a developing country is typically an ‘enclave’. It
operates with very high productivity and capital intensity (McMillan et
al., 2014), but exhibits very little demand and supply spillovers to insti-
tute large scale industrialization. As a result resource rich developing
countries remain poor and underdeveloped. Even though the enclave
nature of mining in Africa have been actively discussed by many schol-
ars, empirical analyses of the extent of spillovers are rare. Aragón and
Rud (2013) study the spillover effect of a Peruvian gold mine on the
local population, but very little literature exist on Africa. The potential
heterogeneous effects of a new mine as opposed to production expan-
sion in an existing mine also remains largely unknown. In this paper
we aim to fill the void by systematically exploring the causal effect
of mineral resource discovery and extraction on development in Sub-
Saharan Africa at district and regional levels. In particular, we distin-
guish between the effects of production volume expansion in existing
mines (intensive margin), new production (extensive margin), and new
discoveries. Using spatial econometrics and GIS we analyze the extent
of spillovers from a mine. We construct a uniform measure of economic
activity at different levels of spatial stratification using satellite data
on night-time lights. In addition, we also estimate the effect of min-
eral discoveries on direct measures of living standards from the Demo-
graphic and Health Surveys (DHS) and public service provisions from
Afrobarometer.

Fig. 1 illustrates our approach. Panel A and B reveal that mineral
extraction and mineral discovery lead to significant improvements in
economic activity measured by night-time lights. Panel A zooms into
Zabre District in the Boulgou Region of Burkina Faso. Zabre has pro-
duced her first mineral commodity, gold, in 2008. The change in the
economic fortunes of Zabre is visually apparent here via the satellite
images of night-time lights before and after gold production. In 2007
before gold production, we do not observe any night-time lights. How-
ever, lights appear in 2008 and 2009. So much for night-time lights,
what about population? In 2007, the Socioeconomic Data and Applica-
tions Centre estimates Zabre’s population to be 135,582 and the pop-
ulation five years later in 2012 is estimated to be 160,150, an 18
percent increase. Panel B reveals a similar story before and after the
discovery of a Sapphire mine in 1998 in the town of Ilakaka in the
Ihosy district of Madagascar. The town Ilakaka did not exist before
1998.

Using regression analysis, we find that mineral production and min-
eral discovery significantly improves economic development at the dis-
trict level in 42 sub-Saharan African countries over the period 1992 to
2012. Night-lights increase due to mining expansion at the intensive
margin. However, large effects are observed at the extensive margin
following new production and new discoveries. We observe that the
positive influence of mineral production takes effect approximately two
years prior to the actual start of mineral production. This is consis-
tent with the view that installation of mining infrastructure and worker
arrival typically predates production.

In order to precisely identify the effect of mining on development
we exploit the exogenous variation in the discovery dates of giant and
major deposits of 21 minerals. We find that the positive effect of dis-
covery on night-time lights enter approximately six years after the first
discovery. The magnitude of the effect of first discovery is 19 percent on
the sixth year and continues to rise to 44 percent on the tenth year. Our
empirical model also successfully negotiates placebo discovery treat-
ments.

Our data covers 42 sub-Saharan African countries at the district
level. Approximately 93 percent of the countries in our sample seem
to have at least one district with a producing mine and 76 percent of
the countries seem to have at least one discovery district. Therefore, the
cross-country distribution of mineral production and discovery appears
to be fairly representative giving credence to the internal validity of
our results. Furthermore, the large sample size across 42 countries also
adds credibility to the external validity of our results.

Our estimates using direct measures of living standards from the
DHS and public service provisions from the Afrobarometer allow us
to draw meaningful conclusions on the economic significance of these
results. We find positive influence of discovery on household wealth
index and urbanization. The effects on education of DHS birth cohorts,
and piped water infrastructure appear to be negative. We notice some
evidence of infrastructure building in terms of new schools and sewer-
age systems immediately after discovery which tends to disappear over
time. We find no effect on electricity connection, infant mortality, and
health clinics.

A skeptic’s view of the positive effect of mining on night-lights is that
it is entirely driven by lights emanating from the mines, particularly if
the location of lights coincide with the same for the mine. Even though
plausible, this view is not supported by mining industry facts on the
ground in Africa (Banerjee et al., 2015).3 Furthermore, using GIS we are
able to exclude all lights around 2, 5 and 10 km radius of a mine from
our sample and our results remain largely unchanged. This is suggestive
of a strong within district effect from an active mine.

A major source of reverse causation in a study of this nature
could be selection. Investors could pre-select more prosperous districts
for mining. Exploiting cross-sectional information on the six stages
of mining investment (grassroots, exploration, advanced exploration,
pre-feasibility, feasibility, construction) in 2012 and regressing them
on development indicators (night-lights density, population density,
paved road density, railway density and electric grid density) in 2000
we are able to investigate whether this is indeed the case. With the
exception of population density at the construction stage none of the
variables register positive and significant effects on the very early
stages of mining investment suggesting that causality runs from min-
ing to development and not in the other direction. In fact railway
density at the advanced exploration stage and electricity grid den-
sity at the exploration stage register weak negative effects reinforc-
ing the observation that new mines typically open far from developed
areas.

Economic development is a general equilibrium phenomenon.
Therefore, analyzing the extent of spillovers from mines is crucial. Fur-
thermore, focusing on the sub-national district level data might mask
the fact that mining districts gain at the expense of non-mining dis-
tricts. In order to unmask such patterns we estimate spatial spillover
effects using spatial econometric techniques. We also test our model at
a larger sized units of observation: regions instead of districts. We do
not find evidence of spillover beyond the host district which attests to
the enclave nature of mines in Africa.

In summary, the key contributions of our paper are as follows.
First, we provide the first estimates of the local economic effects of
mining at the intensive and extensive margins in Sub-Saharan Africa.
Local economic effects are measured by nightlights, living standard
variables from DHS, and indicators of public goods from Afrobarom-
eter. Second, by using data on different stages of mining we are
able to precisely estimate the effects of pre-existing local economic
activity on mining investment. To the best of our knowledge, no
other study provides such estimates. Third, we provide estimates of
spillover effects of mines to surrounding areas using spatial econometric
models.

3 Governments and mining corporations often try to keep workers near the
mining site for lengthy periods of time by offering fixed contracts and prear-
ranged wages. This creates mass migration and hence growth of mining towns
and cities nearby that offer services. The mineral revolution in South Africa
from the 1870 onward is a good example, which had an impact on urban-
ization, agriculture, infrastructure and local politics. The migration prompted
changes in rural areas, as farms lost workers to the mines and demand for food
increased.
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Fig. 1. Mining discovery, mining production and nightlights.

Our paper is related to the predominantly cross-country macro lit-
erature on natural resources and economic development. Auty (2001),
Gylfason (2001) and Sachs and Warner (2001, 2005) note that resource
rich countries on average grow much slower than resource poor coun-
tries. Subsequent studies have argued that natural resources may lower
the economic performance because they strengthen powerful groups,
weaken legal frameworks, and foster rent-seeking activities (Tornell
and Lane, 1999; Collier, 2000; Torvik, 2002; Besley, 2007). Others have

argued whether natural resources are a curse or a blessing depends on
country-specific circumstances especially institutional quality (Mehlum
et al., 2006; Robinson et al., 2006; Collier and Hoeffler, 2009; Bhat-
tacharyya and Hodler, 2010, 2014; Bhattacharyya and Collier, 2014),
natural resource type (Isham et al., 2005) and ethnic fractionaliza-
tion (Hodler, 2006). While these studies do not imply that resource
rents inevitably reduce living standards, they show that it is entirely
possible. The key innovations here are our focus on Sub-Saharan
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Fig. 2. District level boundary map of sub-Saharan Africa.

Africa and the causal interpretation of intensive and extensive mar-
gin of mining.4 We deliver on the causal interpretation by utilizing a
new mine level dataset on mineral production and discovery in sub-
Saharan Africa and relate it to nightlights and other measures of living
standards.

Theory suggests that natural resources affect economic development
through a general equilibrium channel. Therefore, the cross-national
focus of the early empirical literature is understandable. However, there
has been a shift in the focus more recently with several studies focusing
on the local effects of resource extraction. For example, Aragón and Rud
(2013) analyze the effect of a Peruvian gold mine on real incomes of
households using a decade long household survey data and find positive
effects. Caselli and Michaels (2013) and Allcott and Keniston (2014)
focus on the local effects of oil boom in Brazil and shale oil and gas
boom in the United States respectively. In spite of the growing inter-
est on the local effects of resource boom, most of the studies remain
country or mine specific calling into question the external validity of
their findings. Furthermore, studies on Sub-Saharan Africa remain rare.
Two notable exceptions are Kotsadam and Tolonen (2016) and Lippert
(2014). Kotsadam and Tolonen (2016) merge mineral production data
from IntierraRMG with the DHS data for Africa. Employing a difference-
in-difference estimation strategy, they find that opening of new mines
trigger a shift of female workers from agricultural self-employment
to services. Male workers shift to skilled manual labor and mining.
The participation rate of women decreases with mine openings, but it
increases for men. The overall effect of a mine survives only within a
50 km buffer zone from the mine. After a mine closure, men typically
return to agriculture whereas women exit the workforce. Lippert (2014)

4 More recent studies relating oil, conflict and political institutions have used
information on giant oil discovery to mitigate the causality challenge. Cotet and
Tsui (2013) and Lei and Michaels (2014) study the effect of oil on conflict. Tsui
(2011) study the effect of oil on democracy. Arezki et al. (2017) analyze the
impact of oil discovery on macro variables. Bhattacharyya et al. (2017) study
the effect of oil and mineral discoveries on fiscal decentralization.

study the local effect of mining in Zambia. WorldBank (2017) presents a
survey of the emerging literature on the local effects of mining in Africa.

Our paper is also related to a more recent literature on the determi-
nants of development at the sub-national level. This literature makes
use of nightlights and city growth data to measure development at
the regional and sub-national levels (Michalopoulos and Papaioannou,
2013, 2014; Hodler and Raschky, 2014). The factors identified as key
determinants of African sub-national development are pre-colonial eth-
nic institutions (Michalopoulos and Papaioannou, 2013, 2014), birth
region of leaders (Hodler and Raschky, 2014), and colonial railroads
(Jedwab et al., 2017; Jedwab and Moradi, 2016). Michalopoulos and
Papaioannou (2014) also show that national institutions do not explain
sub-national variation in development in Africa.

The remainder of the paper is structured as follows: Section 2
presents the data. Section 3 sheds light on where mining investments go
before studying the local effects of mineral production, at the intensive
and extensive margins, and mineral discovery. Section 4 analyses the
economic significance of these effects by introducing direct measures
of living standards and public goods as dependent variables. Section 5
discusses the general equilibrium and spillover effects. Section 6 deals
with robustness and section 7 concludes.

2. Data

We construct a panel of 3,635 districts from 42 Sub-Saharan African
countries over the period 1992 to 2012.5 Districts are the main units
of observation here. They correspond to the second level subnational
administrative classification of sub-Saharan Africa in 2000 obtained
from FAO GeoNetwork (2013) (see Fig. 2). The average size of a district
in our sample is 6,585 square kilometers.

As our main measure of development we use satellite data on night-
time lights (“luminosity”) provided by National Oceanic and Atmo-
spheric Administration (2013). The data is cleaned luminosity, after

5 Appendix A1 presents a list of countries included in the sample.
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Fig. 3. Mining industry locations.

filtering for cloud coverage, other ephemeral lights, and background
noise. The measure comes on a scale of 0–63, where higher val-
ues imply greater luminosity. The data are available at pixels of 30
arc-second dimension (equivalent to one square kilometer) which is
very high resolution. We calculate light density by dividing the sum
of all night-time lights pixel values within a district by the district’s
area. As an alternative measure, we also construct luminosity per
capita.

The distribution of night-time lights across districts is skewed. A sub-
stantial number of observations (about 31.5 percent of the sample) take
the value zero. There are also a few extreme observations on the right
tail of the distribution. To account for this, we follow Michalopoulos
and Papaioannou (2013) and Hodler and Raschky (2014) and define
the dependent variable as the natural log of night-time lights density
plus 0.01. Such transformation ensures that all available observations
are used and the leverage of outliers reduced. Note that the absence of
reported night-time lights typically does not imply darkness, and cer-
tainly not absence of economic activity (Hodler and Raschky, 2014).
There are also issues with the difference between true lights emanating
into space and what is recorded by a satellite (Henderson et al., 2012).
In particular, there is variation in recorded lights data across satellites.
Measurement error of this nature is unlikely to be a concern here as it is
orthogonal to our estimation models. Furthermore, because all districts
in a particular year are covered by the same satellite, any cross-satellite
variation in night-time lights is already accounted for in the model by
the year fixed effects.

Information on mining at the local level comes from two sources.
The first source is IntierraRMG. It provides data on production quan-
tities and values, start-up year and mining status for 548 industrial
size mines of 21 minerals for the period 1992–2012. All the mines
are matched to the district administrative units. Where IntierraRMG
do not provide a start-up date, we consult other sources (including
the website of each mining company) and add the information. The
second data source is MinEx Consulting. Their database reports dis-
covery and production start-up dates of 259 giant and major min-
eral deposits for 11 minerals (gold, silver, platinum group elements
(PGE), copper, nickel, zinc, lead, cobalt, molybdenum, tungsten and

uranium oxide) from 1950 to 2012. MinEx codes a mineral deposit
as giant if it has the capacity to generate at least USD 500 million
of annual revenue for 20 years or more accounting for fluctuations
in commodity price. A major mineral deposit is defined as one that
could generate an annual revenue stream of at least USD 50 million
but may not last as long as a giant deposit. Figs. 3 and 4 show the
locations of industrial mines and mineral deposit discoveries respec-
tively. In addition, we obtain annual price data for the 21 commodi-
ties from the U.S. Geological Survey (USGS) and extract the coun-
try level total production data of these commodities from Minerals
UK of the British Geological Survey. Overall, 5.4 (2.1) percent of the
3,635 districts in our sample report at least one producing (discovery)
mine.

Population density is an important control variable, as it exhibits
a strong positive correlation with light density (Cogneau and Dupraz,
2014). Population data is obtained from the Socioeconomic Data and
Applications Centre - Centre for International Earth Science Informa-
tion Network (SEDAC - CIESIN). Population estimates are available for
1990, 1995, and 2000, and projections for 2005, 2010, and 2015. We
follow Hodler and Raschky (2014) and aggregate the gridded popu-
lation dataset to second level administrative units. We then construct
annual district population 1992–2012 replacing missing years by linear
interpolation.6

We use a set of geography, climate, political economy and infras-
tructure variables as controls. The geography variables are altitude,
ruggedness, soil fertility, distance to the coast, and land surface area.
From the 90 m Digital Elevation Database of the NASA Shuttle Radar
Topographic Mission (SRTM), we construct mean and standard devi-
ation of elevation. Soil fertility is expressed as the percentage of a
district’s land area with fertile soils for agricultural crops and is con-
structed from the index in FAO/UNESCO Digital Soil Map of the World.
The climate variables are annual rainfall from Tropical Applications of

6 Despite the consistency and spatially explicit population distribution of the
world the grid level population estimates may not match the actual population
at the district level. This could be seen as a standard measurement error because
population projections are not based on night-time lights.
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Fig. 4. Locations of mineral deposit discoveries.

Meteorology using Satellite data (TAMSAT), and the district’s land area
classified as tropical climate, arid climate and temperate climate (Kot-
tek et al., 2006). The infrastructure variables are paved road density
(i.e. paved road length per square kilometer), railway density (i.e. rail-
way length per square kilometer) and electric grid density (i.e. electric
transmission cable length per square kilometer). They are derived from

the African Development Bank and DIVA-GIS for the year 2000. Finally,
the political economy variables are a ‘capital’ dummy variable equal to
one if the district contains, or itself is the capital city, distance to the
capital city. We constructed a measure of ethnic fractionalization fol-
lowing the famous ELF measure but using land shares constructed from
the Ethnographic Atlas by Murdock (1959) instead of population shares

Table 1
Summary statistics.

Variable Obs Mean Std. Dev. Min Max

Main Variables
Log(0.01 + nighttime lights per sq. km) 76,335 −2.365 2.385 −4.605 4.507
Log(Mineral production) 1802 16.859 3.466 −0.235 27.61
Log(Min. prod. 1992 commodity prices) 1802 16.962 3.056 1.658 27.571
Mineral production (1 = yes) 76,335 0.039 0.195 0 1
Mineral discovery 76,335 0.001 0.031 0 1
Mineral discovery (permanent switch) 76,335 0.011 0.105 0 1

Controls: Population and Geography Variables
Log(Population per sq. km) 76,335 3.985 1.609 0.025 10.037
Log(Altitude in m) 3635 5.885 1.382 0.617 7.914
Log(Ruggedness) 3635 4.051 1.139 0 6.931
Share of district with fertile soil 3635 18.600 29.453 0 100
Log(Distance to the coast in km) 3635 5.559 1.373 0 7.453
Log(Land surface area in sq. km) 3635 7.413 1.728 −0.707 12.788

Controls: Climate Variables
Log(Annual average rainfall in mm) 76,335 5.127 0.766 0.029 6.789
Share of district with tropical climate 3635 60.199 47.120 0 100
Share of district with temperate climate 3635 14.320 32.639 0 100
Share of district with dry/arid climate 3635 25.283 42.137 0 100

Controls: Urbanization and Political Economy Variables
Capital city (1 = yes) 3635 0.012 0.107 0 1
Log(Distance to the capital city in km) 3635 5.472 0.973 0.664 7.543
Ethnic Fractionalization 3635 0.207 0.237 0 0.932

Controls: Infrastructure Variables
Log(Paved road per sq. km (2000)) 3635 0.023 0.042 0 0.519
Log(Railway per sq. km (2000)) 3635 1.005 1.729 0 6.790
Log(Electric-grid per sq. km (2000) 3635 0.072 0.175 0 2.256

Notes: This table reports descriptive statistics. All variables are measured at the district level. Discovery is a
dummy variable which takes the value 1 for a district-year if there is a giant or major discovery for that year
and 0 otherwise. The variable mineral discovery (permanent switch) is a dummy variable taking the value
1 for the discovery year and every year thereafter. Summary statistics for mineral production is limited to
districts with mineral production, hence the smaller number of observations. Log transformation for variable
x is conducted using the formula Log(1 + x) if x could potentially be equal to 0.
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Table 2
Descriptive statistics of mineral discovery and production.

Country Number of Districts Share of Districts

Mine Production(1) Mine Discovery(2) Mine Production(3) Mine Discoveries(4)

Angola 3 1 1.54 1.37
Botswana 5 – 2.56 –
Burkina Faso 6 13 3.08 17.81
Cameroon 1 1 0.51 1.37
CAR – 1 – 1.37
Congo – 1 – 1.37
Cote d’Ivoire 5 3 2.56 4.11
DRC 6 2 3.08 2.74
Eritrea 1 1 0.51 1.37
Ethiopia 1 2 0.51 2.74
Gabon 3 2 1.54 2.74
Ghana 12 7 6.15 9.59
Guinea 7 1 3.59 1.37
Kenya 1 – 0.51 –
Lesotho 2 – 1.03 –
Liberia 1 2 0.51 2.74
Madagascar 1 1 0.51 1.37
Malawi 1 – 0.51 –
Mali 6 2 3.08 2.74
Mauritania 2 2 1.03 2.74
Mozambique 5 3 2.56 4.11
Namibia 5 1 2.56 1.37
Niger 2 – 1.03 –
Nigeria 1 – 0.51 –
Rwanda 1 – 0.51 –
Senegal 1 – 0.51 –
Sierra Leone 6 2 3.08 2.74
South Africa 76 9 38.97 12.33
Sudan 1 – 0.51 –
Swaziland 1 – 0.51 –
Tanzania 8 12 4.1 16.44
Togo – 1 – 1.37
Uganda 2 1 1.03 1.37
Zambia 11 2 5.64 2.74
Zimbabwe 11 2 5.64 2.74

Notes: This table provides descriptive statistics of the number and share of districts with mineral production (1 = yes) and discovery (1 = yes)
in each country over the sample period (1992–2012). Columns (1) and (2) presents the number of districts with mineral production and
discovery in each sample country. Columns (2) and (3) presents the share.

(Alesina et al., 2003). The typical assumption here is that proximity to
the capital city is associated with better quality institutions whereas
high levels of ethnic fractionalization are associated with poor institu-
tional quality.

We also use living standards data from the DHS and public goods
data from the Afrobarometer. More on this follows in section 4.

With the exception of rainfall and population, our control variables
are time-invariant at the district level. Table 1 reports summary statis-
tics and Table 2 reports the number and share of districts with at least
one mineral production and discovery. A detailed discussion of the data
and sources can be found in Appendix A2.

3. Mining and development in Sub-Saharan Africa

3.1. Intensive and extensive margins of mining

We start with exploring the effect of mineral production at the inten-
sive margin. Our main specification uses annual data for the period
1992–2012:

LDdt = 𝛼d + 𝜂t + Xdt𝛽 + 𝛾MPdt + 𝜖dt (1)

where LDdt is the natural log of night-lights density plus 0.01 in district
d in year t, MPdt is the natural log of mineral production value, 𝛼d are
district fixed effects, 𝜂t are year fixed effects, and Xdt is a vector of
time-variant control variables including the natural log of population
density and rainfall. Districts without mineral production are dropped
from the regression. The coefficient of interest is 𝛾 , the elasticity of
mineral production at the intensive margin.

Mineral production is measured using two distinct approaches. The
first approach measures production in US dollars using 1992 (=100)
as the base year thereby allowing both the price and the quantity to
change. We call this the production value approach. In contrast, the sec-
ond approach measures the value of mineral production for a particular
year by multiplying production quantity in that year with the mineral
price in 1992. This approach only captures the movement in production
quantity while keeping price unchanged. We call this the production vol-
ume approach.

The second approach is relatively advantageous as it mutes the
effect of short term price fluctuations on night lights. Note that
Commodity prices are determined at the world market and can
fluctuate widely (Deaton, 1999). However, mining companies may
have little scope or incentive to adjust production to price fluc-
tuations in the short-term. Therefore, prices and demand for local
inputs (wages, food, services) may be less affected. Windfall gains
and losses may then largely accrue to capital owners and/or the
state.
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Table 3
Mineral production and night-lights at the district level.

Intensive margin Extensive margin

(1) (2) (3) (4)

Log(Mineral production) 0.024∗

(0.014)
−0.061
(0.047)

Log(Mineral production in 1992 commodity prices) 0.038∗∗

(0.018)
0.102∗

(0.057)

Mineral production (1 = yes) 0.554∗∗∗

(0.117)
Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
N 1,802 1,802 1,802 76,335
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28 3,635/519/42
R-squared adj. 0.979 0.979 0.979 0.945

Notes: This table shows the association between night-lights and various measures of mining activity in a panel of district-year
observations for the period 1992–2012. Dependent variable is log(0.01 + nighttime lights density) at the district-year level.
Column 1 expresses mineral production in US dollars using 1992 (=100) as the base year and thereby allowing both the price
and the quantity to change. Column 2 expresses the mineral production in a particular year as the product of production
quantity in that year and the mineral price in 1992. Column 3 includes both of these indicators. Column 4 uses a dummy
variable equal to one if the district had a producing mine thereby using the full sample. For a detailed variable description, see
Data Appendix. Robust standard errors clustered by region are in parentheses. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at
the 1%, 5%, and 10% level, respectively.

To study the extensive margin, we replace MPdt with a dummy vari-
able equal to one if the district has - or ever had - a producing mine.
Under this specification the sample includes all districts. The estimated
coefficient identifies the change in night-lights associated with a change
in a district’s status from non-mining to mining. Note that district fixed
effects absorb variation in night-lights in districts that do not change
status.

Identification comes from the temporal variation within mineral
producing districts. The validity of this strategy rests on the assumption
that fluctuations in mineral production are driven by factors external to
the district. This may not be true. For example, shocks - such as power
cuts or violent conflicts - may affect both mining and economic activity
during a certain district-year and are not absorbed by the district fixed
effect. The same reasoning applies to the extensive margin. The opening
of a mine can be delayed or coincide with conditions such as opening
of a new road. Keeping these caveats in mind, the results neverthe-
less help to establish the stylized facts that we probe more thoroughly
later.

Columns 1–3 of Table 3 shows effects at the intensive margin.
Column 1 points to a positive association between mineral produc-
tion value and night-lights. The association, however, is stronger when
we use production volumes (column 2), and in a horse race it is the
latter that wins (column 3). The effects of one standard deviation
change in the mineral production (at the intensive margin) variables
on night-lights in columns 1 and 2 are 0.08 percent and 0.12 per-
cent respectively. In column 4 we examine the effect of mining at the
extensive margin on night-lights and find that a switch from a non-
mining district to a mining district is associated with an increase in
night-lights by 55.4 percent. In other words, one standard deviation
increase in the mineral production dummy variable increases night-
lights by 11.1 percent. This is approximately more than 92 times the
effect of mining expansion at the intensive margin and hence a large
effect.

3.2. Mineral production onset and development

Mines will open when and where the expected net present value of
mineral extraction (NPVME) is positive. One could conjecture that this
is more likely in economically more developed districts. For example,
existing infrastructure (railroads, roads, ports, electricity) may reduce

the need to build one. An existing labor pool may reduce the need to
attract one. Such advantages create cost savings, rendering the NPVME
more likely to be positive. However, one can easily come up with other
stories that are less clear-cut. For example, the geology of mineral
resources may be correlated with soil quality and water availability
(riverbeds); certain underlying factors might trigger local opposition to
mining.7

For our analysis, this is an important issue because it may violate
the unconfoundedness assumption thereby threatening the identifica-
tion of causal estimates: Districts that enter mineral production may do
so because of certain unobservable characteristics that are associated
both with the start of mineral production (the ‘assignment’) and with
the potential outcomes.

To the best of our knowledge, there has been no systematic study
that looks into what, on average, attracts a mining industry to one
particular site while ignoring others. We can shed some light on this
issue. Mining companies assess profitability of a site going through
a sequence of stages (grassroots, exploration, advanced exploration,
pre-feasibility, feasibility, construction) of filtering, which is usually
referred to as “mining sequence”. It covers all aspects of mining activ-
ity, but precise boundaries between the stages may vary. The Intier-
raRMG dataset records six stages of mining investment as mentioned
above which we utilize here. The first three stages are predominantly
exploratory whereas the last three stages determine commercial via-
bility of a project. After each stage, selection intensifies. So where do
mining investments go?

In Table 4 we relate the stages of investment recorded in 2012
to district level indicators of development observed in the year 2000.
Note that all estimates in this table are based on cross-section informa-
tion. At no point are night-lights at the district level significantly cor-
related with mining investments. Contrary to the original conjecture,
we observe in columns 2 and 3 that exploration and advanced explo-
ration in mining are less likely in districts with higher electricity grid

7 Opposition may be more likely with the presence of small-scale extraction
and negative externalities. There may also be disagreement about the distri-
bution of rents. For example, a consultant explained to the authors how local
chiefs in Sierra Leone were extracting rents from iron ore mining (for the con-
struction of schools) by threatening to obstruct railroad transportation.
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density and railway density respectively. This is suggestive that min-
ing investments and especially exploration tend to take place in remote
and unexplored locations. We find in column 6 that at the construc-
tion stage a higher population density is attracting investments. This is
unsurprising given that mining construction requires a steady supply of
labor.

Keeping these results in mind, we now identify the effect of mining
at the extensive margin by dividing the data into a control and treat-
ment group. The challenge is to identify a suitable control group that
matches the treatment group in every respect except the treatment. We
choose districts with mining potential identified in a feasibility study as
of 2012, but not yet mined as a control group. Feasibility studies are the
final stage before construction therefore feasible districts are fairly sim-
ilar to the treatment districts.8 Still, only a subset of districts may pass
from the feasibility stage to construction and finally production. We
therefore rely on the same pre-treatment trends to lend confidence to
the parallel trend assumption. In order to facilitate pre-treatment com-
parison, we define the treatment group as those districts that started
mineral production for the first time between 2003 and 2012, hence
we have a symmetric pre- and post-treatment period of 1992–2002 and
2003–2012 respectively.

We first examine whether there is any systematic difference
in observable characteristics between treated and control districts.
Table 5, Panel A, column 1 presents the mean values for each observ-
able characteristic for the treated and column 2 presents the normalized
mean difference between treatment and the control group.9 All observ-
ables are time-invariant or referring to the year 2000. Column 2 sug-
gests that the treated districts are fairly similar to the feasible districts
save their higher electric grid density. We rate this as a better underly-
ing characteristic, which would bias estimate upwards. Note that we do
not use the never mined districts as of 2012 as controls. Cust and Hard-
ing (2014) show that institutions strongly influence oil and gas explo-
ration which renders never mined districts as an unconvincing control
group.

In Table 5, Panel B we report decadal growth rates in the outcome
variables for the 1992–2002 and 2003–2012 period by treatment sta-
tus. We do not find any pre-existing divergent trend in night-lights
across treated and control districts prior to the production treatment
(before 2003). In contrast, during the treatment period trends signifi-
cantly diverge. After a decade night-lights in the treated districts have
grown by about 50 percentage points more. Fig. 5, showing the devel-
opment in night-lights of treated and control groups on an annual basis,
confirms this result.10 While level differences are apparent, their mag-
nitudes remain the same for the years before 2002 (pre-treatment) until
districts start to begin mineral production (in 2003) at which point
they start to outgrow their counterparts. Fig. 6 shows the evolution
of night-lights in districts 10 years before and after the start of min-
eral production. Here, mining districts serve as their own control. The
log-transformation allows us to interpret the slope as growth rates in
night-lights. We observe that districts have a steady growth rate until
two years before the start of production. Then, growth rates strongly
accelerate for a period of about 4 years. This is consistent with an inter-
pretation that infrastructure moves closer to the site one or two years
prior to the actual start of production. While growth rates slow down
afterwards, they are nevertheless steeper than compared to the pre-
mining period.

8 We do not use the construction stage as control group, because construction
by itself already constitutes economic activity caused by mining. We aim to
present an even cleaner strategy when investigating mineral discoveries, see
section 3.3.

9 The normalized difference between treatment t and control group c is

defined as ΔX = (Xt − Xc)∕
√
(S2

t + S2
c )∕2 where X and S2 refer to sample means

and variances respectively.
10 Because of differences in the calibration of satellites, Fig. 5 is not suited to

inform about absolute trends.
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Table 5
Comparison of treated and control districts (mineral production treatment).

Treated
(1)

Normalized Difference (Treated-Control)
(2)

Number of Districts 53 156

Panel A: Time-Invariant Cross-Sectional Variables
Log(Altitude in m) 6.18 −0.00
Log(Ruggedness) 4.31 −0.04
Share of district with fertile soil 16.09 −0.09
Log(Distance to the Coast in km) 5.76 0.05
Log(Land surface area in sq. km) 8.40 −0.03
Log(Average annual rainfall in mm) 4.73 0.03
Share of district with tropical climate 50.88 −0.09
Share of district with dry/arid climate 27.17 0.00
Share of district with temperate climate 21.94 0.11
Capital city (1 = yes) 0 −0.08
Log(Distance to the capital city in km) 5.56 −0.03
Ethnic Fractionalization 0.31 0.02
Log(Paved road per sq. km in 2000) 0.02 0.10
Log(Railway per sq. km in 2000) 1.66 0.03
Log(Electric-grid per sq. km in 2000) 0.06 0.16∗∗

Panel B: Trend Comparison
Log(0.01 + Nighttime Lights Density)
Pre-treatment growth 1992–2002 0.60 0.00
Post-treatment growth 2003–2012 1.33 0.53∗∗∗

Log(0.01 + Nighttime Lights Per Capita)
Pre-treatment growth 1992–2002 0.40 0.02
Post-treatment growth 2003–2012 1.17 0.55∗∗∗

District Level Conflict Intensity
Pre-treatment growth 1992–2002 −0.79 −0.02
Post-treatment growth 2003–2010 −0.06 0.05
District Level Conflict Fatality
Pre-treatment growth 1992–2002 −1.28 −0.08
Post-treatment growth 2003–2010 −0.25 0.08

Notes: This table shows the difference in observables and outcomes between treated and control districts.
Treated districts started mineral production for the first time between 2003 and 2012 (cf. mining districts in
Fig. 5). The control group is defined as districts yet without mining but with mineral deposits, which potential
is examined in a feasibility study (cf. prospective mining districts in Fig. 5). In column (1), coefficients represent
the mean value of each variable for the treatment group. In column (2), we present the normalized mean dif-
ference relative to the control group as recommended in Imbens and Wooldridge (2009). Panel A presents the
comparison of time invariant variables. Panel B presents decadal growth rates before treatment (1992–2002)
and after treatment (2003–2012) except for the conflict variable (2003–2010), as the conflict data is reported
until 2010. ∗∗∗ , ∗∗ and ∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively.

In sum, we observe large positive effects of mineral production at
the extensive margin in sub-Saharan Africa. The effects of mining at the
intensive margin is also positive and significant even though smaller in
magnitude.

3.3. Mineral discovery and development

In this section we relate the news shock of mineral discoveries
to development. Analysing mineral discoveries enables us to explore
and mitigate potential endogeneity challenges associated with min-
eral production. First, one potential concern is that districts with bet-
ter unobservable fundamentals may be more likely to enter produc-
tion. Discoveries are likely to follow a different, less selective model,
because they require less capital, and returns are largely driven by
the size of the deposit which is unknown exante.11 Certain discov-
eries may not enter production at all. Discoveries can be interpreted
as intention-to-treat. Second, the timing of the discovery can be con-
sidered exogenous, if discovery represents ‘news’ to economic agents.
We believe that this element of surprise is particularly likely in dis-
tricts without any mining history prior to the discovery. Third, there

11 In Section 4 we shed more light on the district characteristics that are asso-
ciated with exploration and mining investments.

may be a significant delay between discovery and start of produc-
tion. Our data indicates that 10 years after a discovery, only 27.2%
of the sites entered production. After 20 years, the figure rises to
48.3% (Fig. 7). Setting up mining infrastructure and attracting the
labor force to work in the mines constitute economic activity caused
by mining but it typically predates production. This effect could be
wrongly attributed to the pre-mining era comparison group. In con-
trast, mining discovery constitutes a clean start of the experiment.
Overall, we can treat the discovery date as an exogenous news shock,
much more in line with the start of the experiment, enabling us to
mitigate potential reverse causality challenges associated with mineral
production.

We focus on discoveries between 1992 and 2012. To identify the
effect of discovery shocks on local development, we estimate the fol-
lowing model:

LDdt = 𝛼d + 𝜂t + Xdt𝛽 +
10∑
j=0

�̃� jMDdt−j + 𝜖dt (2)

where MDdt−j is a dummy variable equal to 1 if a mineral discovery has
been made in year t − j, 0 if no discovery has been made and missing
for every year post-discovery other than t − 10.

We restrict MDdt−j to first discoveries, that is to discoveries in districts
that never had any mining activity before, and the comparison group to
non-mining districts without any discoveries. This restriction serves two
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Fig. 5. Trends in lights density before and after mineral production treatment.

Fig. 6. Effect of mineral production on lights density.

purposes. First, existing mining activities may affect local development
and it is difficult to disentangle this effect from the effect of a new
discovery. Second, economic agents may arguably anticipate repeated
discoveries due to the knowledge of past discoveries and geology (Lei
and Michaels, 2014). In contrast, a discovery and its exact timing is

much harder to predict for ‘virgin’ non-mining districts.12 Thus, setting

12 Mineral discoveries in virgin districts are not heavily clustered in admin-
istrative regions with pre-existing mining activities either. For the 1992–2012
period, 36 out of the 73 first discoveries occurred in districts, where the corre-
sponding region had no recorded mining activity as well.
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Fig. 7. Kaplan-Meier estimates of mineral discoveries entering production.

MDdt−j = 1 for first discoveries is the cleanest treatment group. In fact,
the coefficient �̃�0 tests whether there is a significant level difference
between non-mining districts and districts in which a discovery has just
been made. Overall, the coefficients �̃� j measure the difference in night-
lights j years after a discovery.

Table 6 displays the results. In Column 1, the coefficients reflect the
change in night-lights j = {0, 1, …, 10} years after a discovery relative
to the pre-discovery era and trends in night-lights of non-mining dis-
tricts in the same year.13 The coefficient �̃�0 is indeed very close to zero
and remains small and insignificant up to four years after a mineral dis-
covery. After year 6, at j = 6, however, point estimates become positive
and significant and they increase with j. At j = 10, nightlights are 43.8
percentage points higher. This coefficient is below the estimate that
we obtained when using the start of mineral production as explanatory
variable (column 4 in Table 2 and column 3 in Table 4). It is impor-
tant to stress that this is an average treatment effect. The increase in
nightlights may be attributed to two effects. First, an increasing num-
ber of districts entering production after the discovery has been made
and second, night-lights still expanding in districts where production
has already started.

The coefficients in Column 1 do not necessarily measure the effect
of a single discovery, as more discoveries may follow after the first
discovery. In our data there are seven districts that had more than one
discovery. In Column 2, we limit the sample to the time when there
was no subsequent discovery. Coefficients remain virtually unchanged.
Having an additional discovery after the first discovery does not seem
to matter much. This again supports the view that the extensive margin

13 Using the same model as in Eq. (2) but region instead of district fixed effects,
we obtain very similar coefficients indicating that virgin districts that just expe-
rienced a discovery are, on average, hardly different from other districts in the
same administrative region that had not had a mineral discovery.

of mining has a much larger effect on development than the intensive
margin.

We would expect heterogeneous effects with respect to the size of
mineral deposits. In particular, giant deposits should have a larger effect
because of their higher economic value and because they tend to enter
production more quickly than major deposits (Fig. 7). We test this idea
using the same specification as in Eq. (2), but with dummy variables
MDdt−j indicating the first discovery of giant (major) deposits exclu-
sively. Column 3 and 4 shows the estimates for giant deposits and major
deposits respectively. While standard errors are large indicating that
there are no statistically significant differences between giant and major
deposits, point estimates indeed confirm a pattern by which night-lights
take off slightly earlier (at about year 5) and at a steeper rate after a dis-
covery of a giant mineral deposit.14 At year 10 after the discovery, the
increase in night-lights corresponds to 54 percentage points for giant
deposits compared to a 37 percentage points for major deposits. These
are indeed large effects.

4. Nightlights, living standards and public service provision

How big is the economic significance of the estimated effects on
nightlights? A simple test would be to tally them with the district
level real GDP data. Henderson et al. (2012, Table 3) find that for low
and middle income countries with poor quality national accounts data
the elasticity of growth of lights emanating into space with respect to
GDP growth at the national level is close to 0.3. Michalopoulos and
Papaioannou (2013) use DHS data at the sub-national level for four
selective countries (Tanzania, Zimbabwe, Congo DRC, and Nigeria) and

14 There are an average of 25 giant and 48 major deposits in our 10 year time
horizon.
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Table 6
Mineral discoveries and night-lights in virgin districts.

MDdt−j: Mineral discovery made in year t − j First Discoveries
(1)

Single, First Discoveries
(2)

Giant Discoveries
(3)

Major Discoveries
(4)

j = 0 −0.029
(0.061)

−0.028
(0.063)

−0.032
(0.098)

−0.024
(0.081)

j = 1 0.023
(0.073)

0.024
(0.075)

0.100
(0.111)

−0.005
(0.091)

j = 2 −0.011
(0.079)

−0.008
(0.081)

0.075
(0.106)

−0.043
(0.098)

j = 3 0.019
(0.086)

0.006
(0.087)

−0.015
(0.131)

0.039
(0.094)

j = 4 0.071
(0.100)

0.068
(0.104)

0.085
(0.167)

0.070
(0.111)

j = 5 0.126
(0.104)

0.114
(0.109)

0.146
(0.174)

0.122
(0.114)

j = 6 0.194∗

(0.112)
0.190∗

(0.118)
0.314
(0.220)

0.134
(0.118)

j = 7 0.242∗∗

(0.121)
0.218∗

(0.126)
0.342
(0.235)

0.190
(0.123)

j = 8 0.387∗∗∗

(0.137)
0.391∗∗∗

(0.147)
0.484∗∗

(0.235)
0.331∗∗

(0.161)
j = 9 0.401∗∗∗

(0.149)
0.402∗∗∗

(0.155)
0.477∗∗

(0.247)
0.355∗∗

(0.171)
j = 10 0.438∗∗∗

(0.149)
0.431∗∗∗

(0.156)
0.538∗∗

(0.253)
0.373∗∗

(0.166)

Pop. density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes

N 74,234 74,178 73,150 73,828
N(Discoveries) [66, 79] [57, 77] [21, 28] [38, 55]
N(Districts/Regions/Countries) 3,560/516/42 3,557/516/42 3,493/515/42 3,530/515/42
R-squared adj. 0.944 0.944 0.944 0.944

Notes: This table reports the effect of mineral resource discoveries on night-lights in a panel of district-year observations. Districts with pre-
existing mining activities were dropped from the regression. In column (1), the variable of interest MDdt−j is a dummy variable equal to 1 if a
giant or major mineral deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery year j > 10.
In column (2), the dummies are set to missing the year a second discovery was made in the same district. In column (3) and (4), the dummy
refers to giant and major deposit discoveries respectively. Because of the 10-year lag, the discoveries and numbers referred to by each dummy
variable may vary. All regressions include year and district fixed effects. We also control for population density and annual average rainfall.
Robust standard errors in parentheses are clustered by region. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the 1%, 5%, and 10% level,
respectively.

estimate the elasticity between luminosity and composite wealth index
to be 0.7. Hodler and Raschky (2014) also report very similar rela-
tionship at the level of sub-national regions. Based on such estimates
we could speculate that a switch from non-mining to mining would
increase a district’s GDP by 55 × 0.3 = 16.5 percent.

Moreover, we also present estimates of our own using the micro-
level DHS and Afrobarometer datasets. In Table 7 we estimate the effect
of mineral discoveries on five direct measures of living standards -
has electricity (1 = yes), wealth index, urbanization (1 = urban), infant
mortality, and education.15 The first three variables are from the DHS
Household recode (household as the unit of analysis) and the last two
variables are from the DHS birth recode (birth or children as the unit
of analysis). Both DHS survey recodes are geocoded at the DHS clus-
ter level by survey rounds. Fig. 8 reports the centroid of these clusters.
We match the latitude and longitude of these clusters with our 3,635
districts from 42 Sub-Saharan African countries. The household recode
surveys are not annual and therefore we have repeated cross-sections
for columns 1–3. In contrast the birth recodes in columns 4 and 5 allow
us to analyze changes on an annual basis among people belonging to
the same birth cohort.

The wealth index is constructed using composite information on
the household’s ownership of selected assets (radio, telephones, car
etc.), dwelling characteristics such as flooring material, types of drink-

15 Given the less-than-annual frequency of DHS, this exercise is more suitable
for relatively persistent explanatory variables such as mineral discoveries as
opposed to strongly fluctuating explanatory variables such as mineral produc-
tion. Hence the focus on discovery here.

ing water access, sanitation facilities and other characteristics that are
related to wealth status. The index is an ordered variable, ranging from
0 (poorest) to 5 (richest). The infant mortality variable is coded as 1
if a child has died at less than 12 months of age, and 0 if a child is
still alive or died at 12 or more months of age. The educational attain-
ment variable ranges from 0 for no formal education to 1 for higher
education.

We find discoveries have no effects on electricity and mortality
(columns 1 and 4) and moderately positive effects on wealth index and
urbanization (columns 2 and 3). The effect on education appears to be
negative (column 5).

Next in Table 8 we estimate the effects of discoveries on public ser-
vice provision using the Afrobarometer surveys. Fig. 9 reports the cen-
troids of the Afrobarometer survey areas which we match with our dis-
tricts. The dataset here is repeated cross-section with individual respon-
dents or citizens as the unit of analysis. We use the dummy variables
coding citizens’ access to basic services such as schooling, piped water
system, sewerage system, and health clinics. Respondents were asked
whether these public goods and services were present in the primary
sampling unit or enumeration area. We find some early positive effects
on schools and sewerage systems which subsequently gets nullified over
time (columns 1 and 3). This fits the narrative of some non-durable
initial concessions made by the mining companies or the state to the
locals. Investments in local public services appear to increase momen-
tarily only to wither away over time. The effect on piped water supply
appears to be negative (column 2). Mining is often water intensive and
therefore affects the domestic water supply of the district negatively.
Discoveries appear to have no effect on health clinics (column 4).
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Table 7
Mineral Discovery and Living Standards using DHS Data.

MDdt−j: Mine discovery made in year t − j DHS Repeated Surveys DHS Birth Cohorts

Electricity
(1)

Wealth Index
(2)

Urbanization
(3)

Mortality
(4)

Education
(5)

j = 0 0.027
(0.035)

−0.192
(0.160)

−0.029
(0.056)

0.006
(0.008)

−0.039
(0.024)

j = 1 −0.002
(0.047)

0.408
(0.339)

0.096
(0.072)

−0.001
(0.010)

−0.023

(0.020)
j = 2 −0.005

(0.036)
0.033
(0.149)

0.041
(0.052)

0.000
(0.009)

−0.041
(0.028)

j = 3 0.065
(0.047)

0.116
(0.183)

0.021
(0.061)

0.002
(0.012)

−0.030
(0.025)

j = 4 −0.024
(0.021)

0.023
(0.090)

−0.006
(0.043)

0.011
(0.009)

−0.040
(0.032)

j = 5 −0.023
(0.036)

−0.188
(0.248)

0.033
(0.072)

−0.003
(0.010)

−0.052∗∗

(0.027)
j = 6 −0.022

(0.026)
−0.039
(0.146)

−0.003
(0.055)

0.001
(0.011)

−0.063∗∗

(0.027)
j = 7 −0.018

(0.035)
0.226
(0.190)

0.100
(0.091)

0.003
(0.016)

−0.033
(0.030)

j = 8 0.037
(0.061)

0.306∗∗

(0.147)
−0.001
(0.055)

−0.014
(0.011)

−0.068∗

(0.036)
j = 9 0.032

(0.029)
0.246∗∗∗

(0.079)
0.098∗∗∗

(0.037)
0.002
(0.012)

−0.089∗∗∗

(0.026)
j = 10 0.047

(0.058)
0.247∗∗

(0.122)
0.055
(0.056)

−0.011
(0.011)

0.003
(0.036)

Population Density Yes Yes Yes Yes Yes
Rainfall Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes Yes

N 1,078,491 924,789 1,089,838 2,025,409 2,025,354
N(Districts) 2,787 2,675 2,792 2,780 2,780
R-squared adj. 0.389 0.359 0.401 0.0342 0.382

Notes: This table is a re-estimation of Table 6. It reports the effect of mineral resource discoveries on household’s access to electricity
(1 = yes), household’s main residence (1 = urban), household’s wealth index indicating cumulative living standard, infant mortality and
children educational attainment using data from Demographic and Health Surveys (DHS) between 1992 and 2012. In Columns (1)–(5), the
variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no discovery
has been made and missing for every post-discovery year j > 10. All regressions include year and district fixed effects. Robust standard
errors in parentheses are clustered by region. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively.

5. Spillovers and general equilibrium effects

So far, we implicitly assumed that mining leads to some relatively
broad development within the district where the mine is located, but

that effects are mostly limited to that district. Theories of enclave
development question the existence of meaningful spillover effects.
While mining industries are highly productive, forward and back-
ward linkages are limited. This notwithstanding, existing studies of

Fig. 8. Geospatial distribution of DHS clusters.
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Table 8
Mineral Discovery and Public Service Provision using Afrobarometer.

MDdt−j: Mine discovery made in year t − j School
(1)

Piped Water
(2)

Sewerage System
(3)

Health Clinic
(4)

j = 0 0.236∗∗∗

(0.059)
0.115
(0.080)

0.060∗∗

(0.029)
0.260
(0.232)

j = 1 −0.176∗

(0.096)
−0.107
(0.068)

−0.287∗∗

(0.133)
−0.176
(0.177)

j = 2 −0.199
(0.187)

0.114
(0.109)

0.026
(0.033)

−0.083
(0.349)

j = 3 0.154∗

(0.080)
−0.126
(0.092)

0.052
(0.036)

0.102
(0.190)

j = 4 0.076
(0.170)

0.088
(0.167)

−0.027
(0.064)

0.019
(0.244)

j = 5 −0.128
(0.103)

0.122
(0.088)

−0.175∗∗

(0.080)
−0.291
(0.189)

j = 6 0.179
(0.116)

−0.183∗∗

(0.079)
−0.072
(0.076)

0.031
(0.248)

j = 7 0.087
(0.123)

−0.006
(0.115)

0.093
(0.059)

−0.140
(0.231)

j = 8 0.100
(0.149)

0.088
(0.099)

−0.124
(0.128)

0.134
(0.251)

j = 9 0.233
(0.141)

0.024
(0.067)

−0.020
(0.058)

0.120
(0.213)

j = 10 −0.213
(0.168)

−0.084
(0.099)

−0.117
(0.147)

−0.162
(0.195)

Population Density Yes Yes Yes Yes
Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes

N 97,056 96,911 95,579 95,561
N(Districts) 1,911 1,906 1,904 1,908
R-squared adj. 0.212 0.428 0.436 0.258

Notes: This table is a re-estimation of Table 6. It reports the effect of mineral resource discoveries on public service provision (school, piped water, sewerage
system and health clinic). We use repeated surveys data from Afrobarometer between 1999 and 2012. In Columns (1)–(4), the variable of interest MDdt−j is a
dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no discovery has been made and missing for every post-discovery
year j > 10. All regressions include year and district fixed effects. Robust standard errors in parentheses are clustered by region. ∗∗∗ , ∗∗ , and ∗ indicate statistical
significance at the 1%, 5%, and 10% level, respectively.

Fig. 9. Geospatial distribution of Afrobarometer sampling locations.

local development point to certain spillovers. In their study of a
large gold mine in Northern Peru, Aragón and Rud (2013) found
income effects declining with distance and being insignificant beyond
100 km from the mine. Similarly Kotsadam and Tolonen (2016) found

effects on female employment up to a distance of 75 km. Both stud-
ies relate these effects to local demand created by mining. In our
data, distances between neighboring districts average 69.4 km (sd:
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Table 9
Mineral Production and Night-Lights at the District Level (Dropping light pixels emanating from the industry).

2 KM
(1)

5 KM
(2)

10 KM
(3)

Panel A: Intensive Margin
Log(Mineral production
in 1992 commodity
prices)

0.038∗∗

(0.017)
0.028
(0.020)

0.024
(0.027)

N 1,802 1,802 1,802
N(Districts/Regions/Countries) 137/80/28 137/80/28 137/80/28
R-squared adj. 0.979 0.971 0.957

Panel B: Extensive Margin
Mineral production
(1 = yes)

0.543∗∗∗

(0.115)
0.543∗∗∗

(0.115)
0.542∗∗∗

(0.116)
N 76,335 76,335 76,335
N(Districts/Regions/Countries) 3,635/519/42 3,635/519/42 3,635/519/42
R-squared adj. 0.947 0.946 0.945
Population density &
Rainfall

Yes Yes Yes

Year Fixed Effects Yes Yes Yes
District Fixed Effects Yes Yes Yes

Notes: This table is a re-estimation of Table 3. It shows associations between mining activities and night-lights in
a panel of district-year observations for the period 1992–2012. In this table, the dependent variable (i.e. log of
nighttime lights density) excludes lights emanating from the mining industries (i.e deleting pixel values of the light
data around 2–10 km radius of mining industries). In Panel A, the variable of interest in Columns (1)–(3) expresses
the mineral production value in 1992 constant commodity prices. In Panel B, the variable of interest in Columns
(1)–(3) uses a dummy variable equal to one if the district had a producing mine thereby using the full sample.
Robust standard errors clustered by region are in parentheses. ∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the
1%, 5%, and 10% level, respectively.

59.5).16 While spillover effects are of fundamental interest in them-
selves, they are also potential threat for our estimation strategy, as they
give rise to endogeneity issues. Positive (negative) spillovers would
lead to an under(over-)estimation of the true causal effect of mining
activities.

We start with studying an extreme case of enclave development
where the increase in nightlights is driven by lights emanating from the
industry itself, e.g. by lighting up the immediate area of the construc-
tion site, the pit, or the workers’ houses at night. We address this con-
cern by dropping all light pixels around 2, 5, and 10 km radius of mines
and mineral discoveries. Then, we re-estimate the regression models
reported in Tables 3 and 6.17 Results are shown in Table 9 (intensive
and extensive margins) and 10 (discoveries). The intensive margin coef-
ficient (Table 9 panel A) stays positive throughout but loses significance
at the 5 km buffer. In contrast, the extensive margin coefficient (Table 9
panel B) is positive and significant throughout. The discovery coeffi-
cients in Table 10 also stays positive throughout but loses significance
at the 10 km buffer. We therefore conclude that the overall effects are
unlikely to be solely driven by lights emanating from the mines.

We continue our investigation by estimating a Spatial Durbin Model
(SDM):

LDdt = 𝛼d + 𝜂t + 𝜌WLDdt + Xdt𝛽 + WXdt𝜃

+ MAdt𝛾 + WMAdt𝛿 + 𝜖dt (3)

which includes standard measures of mining activities MA, controls
X, district and year fixed effects along with spatially lagged dependent
variable WLD and spatially lagged explanatory variables WX and WMA.
W denotes the spatial weight matrix that defines the potential for inter-
action between each pair of districts. We define neighbors as districts

16 The minimum distance is 1.6 km and the maximum is 573.5 km. The differ-
ences in the distance are explained by the size of the country and the number
of districts within that country (see Fig. 2).

17 Note that increasing the radius increasingly excludes lights not directly pro-
duced by the mine. So there is a trade-off between type I and type II errors
here.

that share a common border (0/1 wt).18 Hence, WX can be easily inter-
preted as X averaged over a district’s neighbors.

The SDM has certain attractive features. The parameter 𝜌 measures
the spatial correlation of lights between neighboring districts. Mining
activities MA may affect a district’s night-lights LD and this change in
lights may spill over to neighboring districts as 𝜌WLD. However, if min-
ing has indeed less forward and backward linkages than other sectors
of the economy, then such spillover of mining induced lights would
be smaller than what is typically the case. This effect is allowed for by
WMA𝛿. If 𝛿 < 0 then spillover effects from mining are smaller than the
average. Alternatively, if 𝛿 = 0 then mining is like any other economic
activity.

The model’s autoregressive element 𝜌WLD means that spillovers
transmit through the whole system of spatially dependent districts, as
neighboring districts have neighbors that in turn have neighbors that
have neighbors and so on. Besides, there are also feedback effects in that
impacts through neighboring districts pass back to the mining district
(the mining district is the neighbor’s neighbor). This makes it difficult to
see the size of the effects from 𝜌, 𝛿 and 𝛾 (unless the former two are both
zeros which imply that there are no spillover or feedback effects from
mining). We therefore report the average effect to the mining districts
(direct effect) and average spillover effect to the neighbors (indirect
effect) separately. The direct and indirect effects are theoretically cal-
culated as [(I − 𝜌W)−1 × (𝛾 I + 𝛿W)]d and [(I − 𝜌W)−1 × (𝛾 I + 𝛿W)]rsum

respectively and are different from the point estimates. Note that I is
the identity matrix, the superscript d is the operator that calculates the
mean diagonal elements of a matrix, and the superscript rsum is the
operator that calculates the mean row sum of the non-diagonal ele-
ments of a matrix. In practice we obtain the estimates using Stata’s
xsmle command written by Belotti et al. (2013).

18 One perceived weakness of spatial econometric models is that results are
sensitive to the somewhat arbitrary choice of the spatial weights matrix W.
LeSage and Pace (2014) call this “the biggest myth in spatial econometrics” as
WaX are typically highly correlated with WbX.
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Table 10
Mineral Discoveries and Night-Lights in Virgin Districts (Deleting lights emanating from the industry).

MDdt−j: Mineral discovery made in year t − j 2 KM
(1)

5 KM
(2)

10 KM
(3)

j = 0 −0.034
(0.062)

−0.029
(0.056)

−0.013
(0.054)

j = 1 0.025
(0.072)

0.011
(0.066)

0.009
(0.065)

j = 2 −0.008
(0.078)

−0.025
(0.072)

−0.022
(0.072)

j = 3 0.013
(0.088)

0.001
(0.079)

−0.018
(0.071)

j = 4 0.065
(0.096)

0.014
(0.081)

−0.029
(0.069)

j = 5 0.108
(0.102)

0.036
(0.084)

−0.022
(0.067)

j = 6 0.172∗

(0.102)
0.085
(0.089)

0.044
(0.075)

j = 7 0.210∗

(0.111)
0.094
(0.096)

0.043
(0.082)

j = 8 0.330∗∗∗

(0.121)
0.164∗

(0.092)
0.082
(0.082)

j = 9 0.335∗∗

(0.131)
0.200∗

(0.121)
0.118
(0.114)

j = 10 0.383∗∗∗

(0.135)
0.248∗∗

(0.123)
0.164
(0.116)

Pop. density & Rainfall Yes Yes Yes
Year Fixed Effects Yes Yes Yes
District Fixed Effects Yes Yes Yes

N 73,428 73,428 73,428
N(Districts/Regions/Countries) 3,560/516/42 3,557/516/42 3,493/515/42
R-squared adj. 0.947 0.947 0.947

Notes: This table is a re-estimation of Table 6. It reports the effect of mineral resource discoveries on night-lights in a panel of
district-year observations. In this table, the dependent variable (i.e. log of nighttime lights density) excludes lights emanating from
the mining industries (i.e deleting pixel values of the light data around 2–10 km radius of mine discoveries). In Columns (1)–(4), the
variable of interest MDdt−j is a dummy variable equal to 1 if a giant or major mineral deposit was discovered j years ago, 0 if no
discovery has been made and missing for every post-discovery year j > 10. All regressions include year and district fixed effects. We
also control for population density and annual average rainfall. Robust standard errors in parentheses are clustered by region. ∗∗∗ , ∗∗ ,
and ∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively.

Among the class of models in spatial econometrics LeSage and Pace
(2009) proposed the SDM as the model of departure.19 It includes spa-
tially lagged explanatory variables. Omitting them if relevant brings
in the issue of endogeneity. In contrast, ignoring spatial dependence
in the error term will result in a loss of efficiency but leave the coef-
ficients unbiased. The SDM can then be simplified to a Spatial Autore-
gressive Model (SAR) if 𝜃 = 𝛿 = 0 and to a Spatial Error Model (SEM)
if 𝜃 = − 𝜌𝛽 and 𝛿 = − 𝜌𝛾.20

We focus on the extensive margin. We use two measures of mining
based on i) mineral production and ii) mineral discovery. For the former
we use a dummy variable if the district has a producing mine. Mineral
discoveries are more complex as the effect unfolds over time. For the
sake of simplicity, we use three dummies equal to 1 if the district had
its first mineral discovery in the last 5, 6–9, and more than 10 years
ago. Because we use district fixed effects, identification comes from
districts that change their status from non-mining to mining within the
1992–2012 period.

Table 11 presents the results. Columns 1 and 3, Panel A present
the OLS estimates that serve as a benchmark. Mineral production is
associated with a significant increase in lights by 55%. The pattern for

19 Elhorst (2010) instead proposed a slightly different approach. In his view,
the Spatial Durbin Model should be estimated if the OLS model is rejected in
favour of the Spatial Autoregressive Model and/or the Spatial Error Model. We
calculated Moran’s I for the residuals in estimations in Tables 2 and 4 and found
a significant positive spatial autocorrelation of the residuals. In line with Elhorst
(2010) this is sufficient to motivate the Spatial Durbin Model.

20 Hence, if the true model is an SEM, the SDM will produce correct standard
errors (Elhorst, 2010).

mineral discoveries confirms the one previously found, whereby lights
do not change much during the first 5 years after a discovery, start to
expand thereafter, and reach 59% after more than 10 years. Columns
2 and 4 show the SDM estimates. The autoregressive coefficient 𝜌 is
highly significant and indicating a strong positive correlation in lights
across space. The spatial lags of mineral activities, in contrast, are neg-
ative indicating that lights in the mining district’s neighbors do indeed
expand by less than one would expect from spatial correlation pat-
terns generally observed in lights. However, none of the spatial lagged
explanatory variables are statistically significant. Likelihood ratio tests
fail to unambiguously favour SAR over SEM, which indicates that the
SDM is more appropriate here being the more general form of the two.
Panel B of Table 11 shows the implied direct and indirect effects. Spa-
tial spillover effects are negligible with respect to mineral production.
Discovery of mineral resources, in contrast, reduce lights in neighboring
districts rendering the total effect small and non-significant well until
10 years after a discovery, when direct and indirect effects increase and
become positive. Overall, we conclude that there is little evidence of
large and significant spatial spillovers from mining. Results from the
OLS estimator are qualitatively the same.

An alternative way to explore general equilibrium effects is to rede-
fine the unit of observation, ideally so that any spill-over effects are
confined to within those redefined units. We therefore study regions
(1st level administrative units), which are one aggregate higher than
districts (2nd level administrative unit). The average region in our sam-
ple comprises seven districts and 46,120 square kilometers (the median
size is 17,878 square kilometers). Furthermore, when using regions
the average Euclidean distance from an active mine to any point on
the respective administrative border increases from 62 km (sd: 57) to
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Table 11
Spatial spillovers from mining.

Start-up of Mineral Production First Mineral Discovery

OLS
(1)

SDM
(2)

OLS
(3)

SDM
(4)

Panel A: Estimated Coefficients
District has a producing mine 0.554∗∗∗

(0.117)
0.559∗∗∗

(0.115)
W(District has a producing
mine)

−0.153
(0.182)

Discovery in the past 5 years 0.009
(0.072)

0.011
(0.067)

Discovery in the past 6–10
years

0.257∗∗

(0.113)
0.247∗∗

(0.108)
Discovery more than 10
years ago

0.593∗∗∗

(0.150)
0.572∗∗∗

(0.145)
W(Discovery in the past 5
years)

−0.121
(0.176)

W(Discovery in the past 6–10
years)

−0.128
(0.211)

W(Discovery more than 10
years ago)

0.056
(0.286)

Population density & Rainfall Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes
District Fixed Effects Yes Yes Yes Yes
𝜌 0.232∗∗∗

(0.016)
0.232∗∗∗

(0.016)
𝛿 = 0 (𝜒2-Test, p-val) 0.66
𝜃 = 𝛿 = 0 (𝜒2-Test, p-val) 0.38 0.45
𝜃 = −𝜌𝛽 and 𝛿 = − 𝜌𝛾

(𝜒2-Test, p-val)
0.19 0.43

N 76,335 76,335 76,335 76,335
N(Districts/Regions/Countries) 3,635/519/42 3,635/519/42 3,635/519/42 3,635/519/42
R-squared 0.947 0.173 0.947 0.145

Panel B: Direct & Indirect Effects of Mining from SDM
Direct Indirect Direct Indirect

District has a producing mine 0.573∗∗∗

(0.115)
0.004
(0.264)

Discovery in the past 5 years 0.013
(0.064)

−0.172
(0.276)

Discovery in the past 6–10
years

0.230∗∗

(0.104)
−0.139
(0.242)

Discovery more than 10
years ago

0.518∗∗∗

(0.129)
0.172
(0.296)

Notes: This table reports spatial spillover effects from mining on neighboring districts in a panel of
district-year observations. The dependent variable is the natural log of night-lights density plus 0.01.
Column (1) and (3) show OLS baselines estimates, whereas (2) and (4) show estimates of a Spatial
Durbin Model (SDM). The direct effect refers to the effect in the mining district, whereas the indirect
effect refers to the average spillover effect into neighboring districts. The total effect of mining is the
sum of the two effects. Estimates are based on a spatial weights matrix W that assigns a 1 to districts
that share a common border. Robust standard errors in parentheses are clustered by region. ∗∗∗ , ∗∗ , and
∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively.

206 km (sd: 105).21 Since mines are more centrally located within a
region, the spill-overs to neighboring regions should be less.

Our testing strategy is as follows. First, we aggregate districts to
regions and re-estimate specification (1) using regions as units of obser-
vation. We expect the coefficient to be positive but smaller than esti-
mates using districts as unit of observation. Second, we aggregate night-
lights in non-mining districts to regions but exclude the mining districts
from the aggregation. Note that while aggregating mining activity from
districts to regions we include both mining as well as non-mining dis-
tricts. We then re-estimate specification (1). Note that we are regress-
ing mining activities in a region on night-lights of non-mining districts
within that region. The effect will necessarily be smaller than in strat-
egy one, because we are excluding the mining districts for which we
found positive effects. A positive/negative coefficient in this specifica-

21 For this exercise, we created a node every 5 km and 50 km along the district
and region border respectively. Then, after calculating the distance between
every mine location and every node on the border we calculated the mean.

tion would point to positive/negative spill-overs to non-mining districts
within the mining regions. We also distinguish between intensive and
extensive margins as we did in Table 3.

Table 12 presents the results. Column 1–4 study the intensive mar-
gin. Column 1 estimates the effect of mineral production values on
night-lights within a region. The effect is positive but small. Column 3
focuses on mineral production quantity keeping the commodity prices
at 1992 levels. We find a significant positive effect at the regional level.
When we use the sample of regions that only aggregates from non-
mining districts (column 2 and 4), the coefficients are smaller and non-
significant, pointing to limited spill-over effects to non-mineral produc-
ing district of a mining region. Column 5–8 study the extensive margin.
Column 5 shows the effect of a region starting mineral production. The
effect is positive and significant. Column 7 shows the effect of discov-
eries. We obtain a similar pattern as at district level, whereas night-
lights tend to increase after discovery, but reach significant levels only
after more than 10 years. Column 6 and 8 exclude mining districts from
the region. We obtain positive but relatively small and non-significant
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Table 12
Mineral production, discovery and night-lights at the region level.

Intensive margin Extensive margin

(1) (2) (3) (4) (5) (6) (7) (8)

Region excluding districts with mineral activities No Yes No Yes No Yes No Yes
Log(Mineral production) 0.018

(0.018)
−0.006
(0.019)

Log(Mineral production in 1992 commodity prices) 0.032∗

(0.018)
0.005
(0.019)

Mineral production (1 = yes) 0.295∗∗∗

(0.082)
0.101
(0.069)

Discovery in the past 5 years 0.003
(0.047)

0.016
(0.065)

Discovery in the past 6–10 years 0.052
(0.056)

0.032
(0.085)

Discovery more than 10 years ago 0.166∗∗

(0.084)
0.056
(0.104)

Population density & Rainfall Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effects Yes Yes Yes Yes Yes Yes Yes Yes
Region Fixed effects Yes Yes Yes Yes Yes Yes Yes Yes

N 1,057 948 1,057 948 10,899 10,710 10,805 10,710
N (Regions/Countries) 80/28 72/27 80/28 72/27 519/42 510/42 516/42 510/42
R-squared adj. 0.984 0.983 0.984 0.983 0.957 0.957 0.957 0.956

Notes: This table shows associations between mining activities and night-lights in a panel of region-year observations for the period 1992–2012. Dependent
variable is log(0.01 + nighttime lights density) at the district-year level. Column (1) & (2) expresses the mineral production value in 1992 constant USD.
Column (3) & (4) expresses the mineral production value in 1992 constant commodity prices. Column (5) & (6) uses a dummy variable equal to one if the
region had a producing mine thereby using the full sample. Column (7) & (8) expresses mining activity as a dummy equal to one if the region had at leaset
one discovery in the last 5, 6–10, and more than 10 years ago. In every odd column, the unit of observation is a region aggregated over all districts, whereas
in every even column region aggregate excludes districts with any recorded mining activity. Robust standard errors clustered by region are in parentheses.
∗∗∗ , ∗∗ , and ∗ indicate statistical significance at the 1%, 5%, and 10% level, respectively.

coefficients indicating positive but limited spill-overs to non-mining dis-
tricts of the same region. Overall, analyzing regions confirms the results
from the SDM model: Regions benefit from mineral production and dis-
coveries, mostly at the extensive margin, but the effects are largely lim-
ited to within the districts in which in the mineral deposits are located.

6. Robustness

We subject our results to a battery of robustness checks.
Tables A1-A3 report placebo test, mining and capital city linkages,
and the effect of mine closure. Further robustness results are shown
in Online Appendix Tables A4-A10 for Table 2 and Tables A11–A16 for
Table 5.

First, our ‘intensive margin’ results may be sensitive to how we
treat missing values in mineral production data (see data appendix for
details). To check robustness we drop district-year observations from
the estimation of Table 2 if production quantity of a single commod-
ity produced by a (single) mine in the district is missing. Coefficients
increase, but our results remain qualitatively unchanged.22

Second, recent studies raised concerns regarding night-lights data.
Min (2008) and Cogneau and Dupraz (2014) argue that in sparsely pop-
ulated areas light intensity is dominated by noise. Min (2008) points to
a minimum population threshold above which one can reliably assume
that the lack of visible night-lights indicate lack of electrification and
outdoor lights. We follow Min (2008) and exclude sparsely populated
districts with less than 4 people per square kilometer from the sam-
ple. Furthermore, we follow Cogneau and Dupraz (2014) and drop zero
luminosity districts from the sample. Key estimates reported in Tables 2

22 On the one hand, the increase in coefficients may be attributed to measure-
ment error and attenuation bias that we introduce by interpolating production
data. On the other hand, relying on exceptionally well-documented cases may
introduce selection bias. After all, detailed reporting may be associated with
good management of a company or governing of a country.

and 5 remain unchanged.
Third, by using districts as the unit of observation we assign each

district the same weight which might lead to over representation of dis-
tricts with greater population density. The concern became self-evident
when contrasting Mali with Burkina Faso. While the two countries have
roughly the same population size, the number of districts is 46 and 301
respectively. One may argue that more consideration should be given
to population size at the district level. We therefore weight districts by
their population size. We also weight districts by the inverse of the total
number of districts in that country, thereby assigning equal weights to
countries. Again, we re-estimate Tables 2 and 5 and the results in fact
become stronger.

Fourth, we address concerns that second level sub-national adminis-
trative boundaries may be endogenous by construction. Administrative
boundary demarcations in a country are typically determined by geo-
graphic, demographic, and political characteristics of the area, which
could be determinants of local economic development. To mitigate this
concern, we use 0.5 × 0.5◦ grid cells as units of observation (i.e. around
55 × 55 km at the equator). Several recent studies have implemented
similar grid-cell level approach (see for example Dell et al. (2012);
Alesina et al. (2016); Michalopoulos and Papaioannou (2013)). Our
results in Tables 2 and 5 remain unaffected by this change in the unit
of analysis.

Finally, the variation in the data could be driven by region level
unobservables. Therefore, we control for region and year fixed effects
in the regression instead of district and year fixed effects. Again our
results in Tables 2 and 5 remain unaffected.

7. Concluding remarks

The paper investigates how mining affects living standards in Sub-
Saharan Africa. In doing so it explores some nuanced question. Are the
development effects of a new mine (extensive margin) any different
from a pre-existing mine (intensive margin)? To what extent can we
observe spillovers from mining? The study finds positive effects of min-
ing at the intensive margin, however large effects are associated with
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mining at the extensive margin. The enclave nature of mining is demon-
strated by our data as we hardly observe any spillover of the positive
effects beyond the host district.

Regression analysis using data from the DHS and Afrobarometer
show that the effects on nightlights are indeed economically significant
even though not uniform across all indicators. Therefore we can con-
clude that the changes in luminosity density due to mining is indeed

reflective of some changes in living standard.
Our findings imply that resource depletion in sub-Saharan African

countries offer a temporary opportunity to improve local living stan-
dards. However, the absence of significant positive spillovers represent
additional challenges for the durability of these effects. Nevertheless,
this is perhaps a generational opportunity for economic transformation
not to be missed by sub-Saharan Africa.

Appendices

A1. List of countries in the sample

Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African Republic, Chad, Democratic Republic of Congo, Cote d’Ivoire,
Equatorial Guinea, Eritrea, Ethiopia, Gabon, Gambia, Ghana, Guinea, Guinea Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali, Mauritania,
Mozambique, Namibia, Niger, Nigeria, Republic of Congo, Rwanda, Senegal, Sierra Leone, Somalia, South Africa, Sudan, Swaziland, Tanzania, Togo,
Uganda, Zambia, Zimbabwe.

A2. Data appendix

Administrative units of Sub-Saharan Africa

We use districts as the main units of observation. Districts are second level sub-national administrative units. We obtained the political boundaries
from a shapefile entitled “Sub-National Administrative and Political Boundaries of Africa (2000)” deposited at FAO GeoNetwork (FAO GeoNetwork,
2013). The 3,635 districts belong to 521 regions and 42 Sub-Saharan African countries. The average area of a district is 6,585 square kilometers.

Mineral production, mineral discovery and mining status

The value of mineral production is calculated as production quantity in metric tons (t) multiplied by the international price (1992$/t) summed
over 21 mineral commodities (diamond, iron, gold, silver, copper, nickel, aluminum, cobalt, zinc, lead, manganese, bauxite, tantalum, zircon, tin,
chromite, antimony, platinum-group metals (PGE), vanadium, vermiculite and graphite). The prices of mineral commodities are sourced from Miner-
als UK (British Geological Survey, 2014). The production data for 548 industrial size mines are from IntierraRMG, now known as SNL (IntierraRMG,
2014). Mines are matched to the district using their location coordinates from IntierraRMG. Information for every mine, commodity (particularly for
secondary minerals) and year is sometimes lacking. We dealt with missing production data as follows. We replaced missing values by linearly inter-
polating production quantities at the district-commodity level. Any negative values were set to zero and we entirely dropped commodities if only
observed in a single year. This results in a balanced panel of district production data for the period 1992–2012. We complemented IntierraRMG’s
information on production start-up year with our own efforts consulting sources such as the website of the respective company. From IntierraRMG
we also extracted information on the status of mining (grassroots, exploration, advanced exploration, pre-feasibility, feasibility, and construction).
The first three stages of mining investment are predominantly exploratory whereas the last three stages determine commercial viability of a project.
The data on discoveries of major or giant mineral deposits are from (MinEx Consulting, 2014). We have the date of discovery, location coordinates,
and the date of production start-up for 263 mineral discoveries from 1950 to 2012. Finally, we make use of some macro data commonly used in
the literature. Data on mineral exports value as a % of GDP and mineral rents as a % of GDP are drawn from the Bank (2015) and the Wealth of
Nations Database (Hamilton and Clemens, 1999) respectively.

Night-time lights

The data on night-time lights 1992–2012 come from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS)
and are provided by National Oceanic and Atmospheric Administration (2013) at a high resolution of 30-s grids (equivalent to 1 square kilometer).
Satellites captured images of the earth between 20:30 to 22:00 local time. The night-time lights data is the cleaned luminosity after the cloud
coverage, other ephemeral lights, and background noise is excluded. The measure comes on a scale from 0 to 63 (digital number) where higher
values imply higher night-time light intensities.

Population statistics

District population was constructed from the Gridded Population of the World, Version 3 (GPWv3) produced by the Centre for International
Earth Science Information Network (CIESIN, 2005). GPWv3 provides population counts at 2.5 arc-minute resolution for 1990, 1995, and 2000 and
population projections for 2005, 2010, and 2015. We obtained the district population for the years {1990, 1995, …, 2015} by areal weighting and
imputed values for single years 1992–2012 by linear interpolation.

Public infrastructure

Shapefiles of the road network and electricity grids in 2000 come from the African Development Bank (2013), and the railway shapefiles are
from DIVA-GIS (Hijmans et al., 2012). Using GIS we calculated the total length (km) of paved roads, railways and electric grid in each district,
expressing it then as densities: i) road density (i.e. paved road length per square kilometer), ii) railway density (i.e. railway length per square
kilometer) and iii) electric grid density (i.e. electric transmission cable length per square kilometer).

Altitude, ruggedness, fertility, coastal proximity and land area

Topographical data of the NASA Shuttle Radar Topographic Mission (SRTM) 90 m Digital Elevation Database was retrieved from the Consortium
for Spatial Information (CGIAR-CSI) of the Consultative Group for International Agricultural Research (CGIAR) (Jarvis et al., 2014). We calculated
the altitude as the mean elevation above sea level of a district (in 100s of meters). Ruggedness measures a district’s average standard deviation
of elevation (in 100s of meters). Using data from FAO/UNESCO Digital Soil Map of the World (FAO, 2014), we constructed soil fertility as the
percentage of a district’s land surface area with good fertile soil for agricultural crops. Using GIS we calculated the shortest distance from a district’s
centroids to the coast (in kilometers). We measure the area of the district as the land surface area (in square kilometers) using the shapefile of
administrative boundaries.
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Rainfall, tropical climate, arid climate and temperate climate

Average annual rainfall (in mm) in each district for the period 1992–2012 is constructed using rainfall data from the TAMSAT Research Group
(TAMSAT, 2014). TAMSAT rainfall estimations are locally calibrated using historic rain gage records (ground-based observations) in real-time to
provide an internally consistent rainfall dataset. Using data from Kottek et al. (2006) we calculated the percentage of the district’s land surface area
that are classified as tropical climate, arid climate and temperate climate.

Political economy

Using GIS we created a capital dummy variable equal to one if a district contains the capital city, or if the district itself is the capital city. We also
use GIS to calculate the distance between a district’s centroid and the capital city (in kilometers). Furthermore, we measure ethnic fractionalization
as one minus the Herfindahl-Hirschman index of the area shares that ethnic groups occupy according to Murdock (1959):

FRACTd = 1 −
N∑

i=1
s2
id (4)

where sid is the share of land of ethnic group i in district d. Analogous to the ethnolinguistic fractionalization measure ELF it indicates the probability
that two randomly selected geographic units (e.g. grids of the same size) belong to the same ethnic group. If population densities are the same across
ethnic groups, it is equivalent to ELF (the probability that two randomly selected individuals belong to the same ethnic group).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jdeveco.2019.02.001.
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